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Abstract
We discuss the formulation of quantized macroscopic electrodynamics
interacting with Dirac particles. In particular, we consider the case of a
dielectric half-space characterized by a constant, i.e. frequency-independent
refractive index n. In contrast to perfectly reflecting boundary conditions,
the matching conditions for the field strengths at the surface of the dielectric
lead to the appearance of evanescent waves, and their presence modifies the
representation of the photon propagator considerably. As an example of a one-
loop calculation we determine the self-energy of a free electron on the vacuum
side of the boundary. We find that in the limit of perfect reflectivity of the
surface the self-energy disagrees with the one that emerges from calculations
that assume perfect reflectivity from the outset. We develop calculational
techniques for coping with problems that arise specifically due to the imperfect
reflection at the surface.

PACS numbers: 03.70.+k, 12.20.−m

Quantum Electrodynamics is one of the fundamental theories of nature and the simplest and
best studied gauge theory. In elementary particle theory it is in the simplest case formulated
as a theory of electrons and photons. However in other fields—like quantum optics—a
more phenomenological formulation is important. There part of matter may be represented
macroscopically by a dielectric. In general this dielectric and its properties are described by
a complex and frequency-dependent dielectric function satisfying Kramers–Kronig relations.
Thus dispersion necessarily goes hand in hand with absorption, and the degrees of freedom that
cause the absorption must be taken into account explicitly when constructing a field theory.
That is why quantized theories of the electromagnetic field in the presence of a dispersive
dielectric are quite complicated [1, 2], and not surprisingly even more so if one couples in
another particle [3].

However, there are a broad range of problems whose physics does not depend on the
dispersive properties of the dielectric material, and for those one can construct a theory of
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Figure 1. The left half-space is filled by vacuum, and the right by a non-dispersive dielectric.
Depending on their angle of incidence, right-incident modes can be evanescent on the vacuum side.
The electron is localized in a wave packet whose centre is a distance a away from the interface.

quantized macroscopic electrodynamics with less trouble by turning to a model with a non-
dispersive and non-absorbing dielectric. In that case one can resort to much of the standard
repertoire of quantum electrodynamics when it comes, for example, to the determination of
radiative corrections or to the elimination of divergences.

While the model of a non-dispersive and non-absorbing dielectric is of course a severe
and partially unphysical idealization (because any real material has to be transparent at infinite
frequency), it is one step better than a perfect-reflector model in allowing for imperfect
reflectivity and also for evanescent waves. However, either model can sensibly be applied
only to systems and processes whose dynamics are governed by a finite frequency range for
which the dielectric response of the material can be approximated by a constant. For Casimir–
Polder type problems of a particle or atom located at a distance a away from a surface and
interacting with it, the relevant frequencies are of order 2π/a, which is normally very small
since a tends to be much larger than optical wavelengths, so that only the static dielectric
response matters for the interaction. Hence such problems are well suited to be studied within
a non-dispersive and non-absorbing model for the dielectric.

Free field theories with a variety of dielectric or plasma surfaces as boundaries are widely
discussed in Casimir-like problems [4, 5]. Our aim is to go beyond the study of the free
field, and give an example of a one-loop calculation for a Dirac particle interacting with the
electromagnetic field [6]. As a simple model system we consider a dielectric half-space with
constant refractive index n, so that the dielectric function is a step function

ε(r) = 1 + (n2 − 1)�(z). (1)

The classical electromagnetism of this system is treated in textbooks. Maxwell’s equations
imply that the tangential components of the electric field E and of the magnetic field H and the
normal components of the dielectric displacement D and of the magnetic induction B have to
be continuous across the interface at z = 0. The two polarizations of an electromagnetic wave
can then be represented as transverse electric (TE) and transverse magnetic (TM) waves, and
solutions to the wave equation can be expressed in terms of an incoming and a reflected wave on
one side of the interface and a transmitted wave on the other side (see figure 1). The reflection
and transmission amplitudes of these waves are then the standard Fresnel coefficients.

For a quantum field theoretical treatment we need a formulation in terms of the gauge
potential. As the gauge condition we use the generalized Coulomb gauge condition

∇ · (εA) = 0, (2)
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which is widely adopted in quantum optics. Alternatively, one could adopt a generalized
covariant condition [6]. The generalized Coulomb gauge may cause problems exactly on the
interface, where the gauge condition is not well defined because of the discontinuity in the
dielectric function. However, Barton [7] has shown that a unitary transformation can be found
that resolves any such difficulties with surface-bound divergences. For the purposes of the
present work it suffices to note that away from the interface the generalized Coulomb gauge
is simply equivalent to the standard Coulomb gauge.

We quantize our system in terms of left-incident and right-incident waves Aµ = A
µ

L +A
µ

R ,
which form an orthogonal [8] and complete [9] set of modes in Hilbert space. For example,
the right-incident mode reads

A
µ

R(x) =
∑

σ=T E,T M,G,C

∫
d3kdθ

(−kd
z

)
(2π)3/2(2ω)1/2

{
eµ
σ exp(−ix0k0)aR

k,σ

[
θ(z)

1

n

(
exp(ikd · r)

+ RR
σ (k) exp(ikr,d · r)

)
+ θ(−z)T R

σ (k) exp(ik · r)
]

+ h.c.

}
. (3)

Here aR
k,σ is the photon annihilation operator of the mode, and RR

σ (k) and T R
σ (k) are its

reflection and transmission coefficients.
As dictated by the laws of refraction, we have equal frequencies but different k-vectors

on the two sides of the vacuum–dielectric interface. The wave vector on the vacuum side is
denoted by k, and the one on the dielectric side by kd . The reflected wave vectors kr and
kr,d differ from k and kd , respectively, by the relative signs of their z components. The wave
vector components k‖ parallel to the interface are of course always the same within one and
the same mode, just the z components differ on the two sides of the interface. Denoting the z

component on the vacuum side by kz and that on the dielectric side by kd
z , we have

kz =




sgn
(
kd
z

)1

n

√
kd2
z − (n2 − 1)k2

‖ for kd2
z − (n2 − 1)k2

‖ > 0,

−i
1

n

√
−kd2

z + (n2 − 1)k2
‖ for kd2

z − (n2 − 1)k2
‖ < 0.

Thus, for right-incident modes the integration over kd includes imaginary values of kz, which
corresponds to modes that come from inside the dielectric, suffer total internal reflection at
the interface, and are evanescent on the vacuum side.

When it comes to the quantization of the system several important points have to be taken
into account:

(i) In the generalized Coulomb gauge the mode decomposition includes just the two physical
modes, i.e. the TE and TM modes, but in the generalized ‘covariant’ gauge one has to
include in addition the gauge mode G and the longitudinal Coulomb mode C.

(ii) The polarization vectors eµ
σ are best chosen as differential operators, because this facilitates

the representation of the vector field modes in terms of scalar modes.
(iii) It is essential that the evanescent waves are included, because they are needed for the

completeness of the modes.

For a perturbative treatment of the theory we need propagators and vertex factors. We
assume that the electron is sufficiently far away from the dielectric so that there is no direct
wavefunction overlap with the matter making up the dielectric. Then the only building block
of the theory that is directly affected by the presence of the dielectric is the photon propagator.
Using the mode decomposition in terms of TE and TM waves mentioned above and taking
into consideration various analytical properties of the reflection and transmission coefficients,
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we find [6] that the photon propagator be expressed in terms of scalar propagators Dc
σ (x, x ′)

for each mode:

Dµνc(x, x ′) =
∑

σ

eµ
σ (∂x) eν∗

σ (∂x ′)gσσDc
σ (x, x ′).

with

Dc
σ (x, x ′) = −

∫
d3k̃

(2π)4
e−i(x̃−x̃ ′)k̃

{
θ(z)θ(z′)

∫ ∞

−∞
dkd

z

[
eikd

z (z−z′) + e−ikd
z (z+z′)RR

σ

]

× 1

n2k2
0 − k2

p − kd2
z + iε

+ θ(−z)θ(−z′)
[∫ ∞

−∞
dkz eikz(z−z′) +

∫
C

dkz eikz(z+z′)RL
σ

]
1

k2 + iε

+ θ(z)θ(−z′)
1

n

∫ ∞

−∞
dkd

z e−ikzz
′+ikd

z zT R∗
σ

1

k2
0 − (

k2
p + kd2

z

)/
n2 + iε

+ θ(−z)θ(z′)
1

n

∫ ∞

−∞
dkd

z eikzz−ikd
z z′

T R
σ

1

k2
0 − (

k2
p + kd2

z

)/
n2 + iε

}
, (4)

where the integrations path C runs along the real axis from −∞ to 0, then down the negative
imaginary axis from 0 to −i	/n to the left of the square root cut, back up to the origin
to the right of the cut, and then along the real axis from 0 to +∞. The cut is due to
kd
z = (

n2k2
z + (n2 − 1)k2

‖
)1/2

/n and extends from kz = +i	/n to kz = −i	/n.
In an alternative formulation one can rewrite the photon propagator by replacing the third

line of (4) by

θ(−z)θ(−z′)
[∫ ∞

−∞
dkz eikz(z−z′) +

∫ ∞

−∞
dkz eikz(z+z′)RL

σ +
∫ 0

−	

dkd
z eikzz−ik∗

z z′
T R∗

σ T R
σ

]
1

k2 + iε
.

(5)

With equations (4) and (5) we have obtained a closed expression for the photon propagator
in terms of scalar mode-specific T functions. The evanescent modes are included either by a
deformation of the integration path in the complex kz plane, as in (4), or by explicit addition
of an integral over the region of pure imaginary-valued kz, as in (5).

Now we are in the position to start with perturbative loop calculations using standard
Feynman rules: our photon propagator is more complicated than in free space and lacks
translation invariance in z direction, but the vertex factor and the electron propagator are the
same as in free space, since we have made the reasonable assumption that the electron does not
interact with the matter making up the dielectric in any direct way3. Therefore we must assume
that the electron is located outside the dielectric and at least several Compton wavelengths
away from it. As an example of a 1-loop calculation we have determined the self-energy of a
Dirac electron.



(radiative)
αβ (x, x ′) = −i e2γ µ

ακS
(0)
κλ (x − x ′)γ ν

λβDc
µν(x, x ′). (6)

In Coulomb gauge, where the photon propagator is made up of contributions from the TE
and TM modes, this is in fact only the radiative self-energy. The electrostatic self-energy

3 If there was direct wave-function overlap between the electron and the atoms making up the dielectric then we
could not use macroscopic electromagnetism, i.e. we could not describe the properties of the dielectric solely by its
reaction to macroscopic fields.
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must be calculated separately. This is, however, a relatively simple calculation whose result
of course agrees with the classical energy of a charge and its image on the other side of the
interface [10]. From equations (4) and (5) it is obvious that the photon propagator in the
presence of the dielectric half-space is in fact a sum of the standard free-space propagator and
a boundary-dependent correction. One also notices that divergences arise only through the
free-space part, so that renormalization is the same as in the free space and loop calculations
involving only the boundary-dependent part are finite if one works with already renormalized
parameters. However, there can of course arise additional new divergences directly on the
boundary, but these are of no relevance to the calculation of physical quantities away from the
boundary.

The lack of translation invariance in z-direction is a severe technical complication. Our
photon propagator and thus the self-energy depend separately on x3 − x ′3 and x3 + x ′3. To
deal with this complication, we first note that in order to calculate physically meaningful
quantities, i.e. an effective-mass correction which depends on the distance of the electron from
the surface, we need to localize the electron in some sort of wave packet. If the centre of that
packet is at x3 = −a, we can approximate x3 + x ′3 ≈ −2a, while not approximating x3 − x ′3.
A Fourier transform of 
(x − x ′, x3 + x ′3 ≈ −2a) with respect to x − x ′ leads to 
(p,−2a),
which can be determined [6]. Since the distance a of the electron from the surface is supposed
to be much larger than the Compton wavelength, we are in fact interested in an asymptotic
expression to leading order in 1/(p0a). With the electrostatic self-energy already included the
result for the total self-energy is4


(p,−2a) � − e2

32πp0a

[
γ‖ · p‖

n2(n2 − 1)

(n2 + 1)2
+ 2γ3pz

2n4 − n2 − 1

(n2 + 1)2
+ 2γ0p0

n2 − 1

n2 + 1

]
. (7)

In deriving this result one encounters several issues that are characteristic of problems with
imperfectly reflecting boundaries. First, one meets double integrals—effectively over the
photon frequency ω and over the angle of incidence θ—whose convergence is due to factors
like exp(4ip0aω cos θ) or exp(−4p0aω cos θ) after Wick rotation. ω runs from 0 to ∞,
and cos θ runs from 0 to 1. Obtaining an asymptotic approximation for large p0a in one-
dimensional integrals with this sort of factor is normally very easy; one simply integrates by
parts. In the two-dimensional case this strategy does not work because integration by parts
in the ω integral generates not just inverse powers of p0a as desired but also inverse powers
of cos θ which destroy the converge at the lower limit of the integral over cos θ . Vice versa,
integration by parts in the integral over cos θ generates unwanted inverse powers of ω which
cause the resulting ω integral to diverge at the lower limit. The way out of this dilemma is
to make the other parts of the integrand linear in cos θ or ω by separating off the respective
first terms in their Taylor expansions around the points cos θ = 0 or ω = 0 and treating those
separately [11]. The problem arises because the argument of the exponential has a saddle
point in a corner of the domain of integration, and the general remedy is to subtract this point,
treat it separately, and use Stokes’ theorem for two-dimensional integration by parts in the
remaining integral [12].

Furthermore, it is worthwhile pointing out is that the limit n → ∞ of our results does not
agree with what one would obtain if one calculated the same quantity in a model that assumes
a perfectly reflecting boundary from the outset. We have discussed this issue extensively in
[13]. This discrepancy is due to the non-interchangeability of the limits n → ∞ and photon
frequency ω → 0. Physically it has to do with the presence of evanescent waves and the
fact that the electron is unbound, which means that the integral over excitation energies of the

4 For a full derivation of this result by means of relativistic quantum electrodynamics see [6]; the equivalent non-
relativistic derivation can be found in [13].
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electron runs from zero. For e.g., an atom interacting with a surface, this problem does not
arise because the transition to another atomic state has a natural IR cutoff for a bound electron.
Note also that this issue is unrelated to the observation that there seem to be two ways of
imposing perfectly reflecting boundary conditions, depending on one’s choice of gauge and
polarization vectors and interpreted as representing ‘thick’ or ‘thin’ boundaries [14].

Another important example of loop calculations for a Dirac particle near a dielectric
surface are vertex corrections, which have an impact on g-2 corrections [15]. For perfect
boundaries the boundary-dependent g-2 corrections are well investigated [16], but in the light
of [13] one can expect different results for an unbound particle close to imperfect boundaries.
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